Structural characterization of lignin during Pinus taeda wood treatment with Ceriporiopsis subvermispora.

نویسندگان

  • Anderson Guerra
  • Régis Mendonça
  • André Ferraz
  • Fachuang Lu
  • John Ralph
چکیده

Pinus taeda wood chips were biotreated with Ceriporiopsis subvermispora under solid-state fermentation for periods varying from 15 to 90 days. Milled wood lignins extracted from sound and biotreated wood samples were characterized by wet-chemical and spectroscopic techniques. Treatment of the lignins by derivatization followed by reductive cleavage (DFRC) made it possible to detect DFRC monomers and dimers that are diagnostic of the occurrence of arylglycerol-beta-O-aryl and beta-beta, beta-5, beta-1, and 4-O-5 units in the lignin structure. Quantification of these DFRC products indicated that beta-O-aryl cleavage was a significant route for lignin biodegradation but that beta-beta, beta-5, beta-1, and 4-O-5 linkages were more resistant to the biological attack. The amount of aromatic hydroxyls did not increase with the split of beta-O-4 linkages, suggesting that the beta-O-4 cleavage products remain as quinone-type structures as detected by UV and visible spectroscopy. Nuclear magnetic resonance techniques also indicated the formation of new substructures containing nonoxygenated, saturated aliphatic carbons (CH(2) and CH(3)) in the side chains of lignins extracted from biotreated wood samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Based Structural Insights into Biodegradation of the Herbicide Diuron by Laccase-1 from Ceriporiopsis subvermispora

The herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is used in many agricultural crops and non-crop areas worldwide, leading to the pollution of the aquatic environment by soil leaching. White rot fungi and its lignin modifying enzymes, peroxidases and laccases, are responsible for its degradation. Therefore, it is of interest to explore the potential use of Ceriporiopsis subvermispo...

متن کامل

Manganese-Dependent Cleavage of Nonphenolic Lignin Structures by Ceriporiopsis subvermispora in the Absence of Lignin Peroxidase.

Many ligninolytic fungi appear to lack lignin peroxidase (LiP), the enzyme generally thought to cleave the major, recalcitrant, nonphenolic structures in lignin. At least one such fungus, Ceriporiopsis subvermispora, is nevertheless able to degrade these nonphenolic structures. Experiments showed that wood block cultures and defined liquid medium cultures of C. subvermispora rapidly depolymeriz...

متن کامل

Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis.

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninoly...

متن کامل

Lignin-degrading peroxidases from the genome of the selective ligninolytic fungus Ceriporiopsis subvermispora*

Background: The first genome of a selective lignin-degrader is available. Results: Its screening shows 26 peroxidase genes, and five were heterologously expressed and catalytic properties investigated. Conclusion: Two new peroxidases oxidize simple and dimeric lignin models and efficiently depolymerize lignin. Significance: Although lignin peroxidase and versatile peroxidase had not been report...

متن کامل

Evaluation of Biological Pretreatment of Rubberwood with White Rot Fungi for Enzymatic Hydrolysis

e effects of biological pretreatment on the rubberwood (Hevea brasiliensis), was evaluated after cultivation of white rot fungi Ceriporiopsis subvermispora, Trametes versicolor, and a mixed culture of C. subvermispora and T. versicolor. The analysis of chemical compositions indicated that C. subvermispora had greater selectivity for lignin degradation with the highest lignin and hemicellulose l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 70 7  شماره 

صفحات  -

تاریخ انتشار 2004